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SUMMARY

A theoretical study is made of the motions experienced by ailrcraft
in reponse to sharp-edge, harmonic, and random gusts. For the sharp-
edge and harmonic gusts, exact responses in normal acceleration and
pitching velocity are presented for the rectangular wing flying at Mach
number 1.2, These are compared with approximate solutions based on
commonly used assumptions, and the validity of each of the assumptions
is assessed. It is determined that the use of stability derivatives in
place of indlcial functions in the equations of motion does not signifi-
cantly impair the accuracy of solutions for transient and harmonic
response.

The problem of alleviating the alrplane's response to random gusts
is cast in a form amenable to treatment by the Wiener optimum filter
theory. A derivation is given of the theoretical requirements of a
compensating~force system that minimizes & linear combination of the air-
plane's mean-square normal acceleration and mean-square pitching velocity.
Results of camputations are presented which indicate the system mey be
successful in causing significant reductions of both motions.

INTRODUCTION

For many years, aerodynemicists have studied the motions end loads
which aircraft experience when they encounter vertical gusts in their
line of flight. The reason for this contlnued interest is readily under-
stood when it is recalled that the stresses imposed by gusts may be among
the most severe that an aircraft structure is required to withstand. The
gust loading condition is therefore generally considered the crucilal
factor in determining the adequacy of a structural design. Furthermore,
since the structural design plays a large role in determining the air-
craft's welght, the influence of the gust loading on the structural
design In turn serves as & limiting factor on the maximum range and
speed of the vehicle. The slightly different viewpoints expressed in
the two reasons have inspired two flelds of research, corresponding
roughly to the categories of analysis and synthesis. In the first, the
necessity of including the gust loading condition in structural calcu-
lations led to the development of analytical methods by which the motions
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and loads imposed by specified gusts could be predicted. Second, the
possibility of saving weight by lightening the structure inspired efforts
to develop aerodynamic and electromechanical devices which operate to
offset the imposed loaeds caused by gusts. A brief sketch follows outlin-
ing some of the major developments in these fields.

The earliest work in analysis 1s that of Wilson (ref. 1) who fol-
loved the classical stebility theory of Bryan (ref. 2) and Bairstow,
Jones, and Thompson (ref. 3). 1In this theory it is assumed that the
transient behavior of the aerodynamic forces and moments following sudden
changes in airplane motion or gust velocity can be neglected. As a
result, the equations of motion describing the airplane's response to
disturbances reduce to a system of ordinary differential equations which
are generally readily solved. Because of its simplicity and adaptability,
this theory has been the one most often used in subsequent analyses.
Later theoretical developments include the introduction of the transient
1ift functions (refs. 4 and 5) and their use in connection with the oper-
ational calculus to describe more precisely the motions end loads caused
by gusts of arbitrarily specified structure (refs. 6 and 7). The anal-
ysis in this case is exact within the framework of the theory used to
derive the transient 1ift functions, but complete solutions generally
involve the inversion of integral equations, which often require a for-
bidding amount of labor. A further limitation in either of the methods
just described is the necessity of specifying mathematically the struc-
ture of the spacewise distribution of gust velocity through which the
airplene flies. It is, therefore, not possible to handle with these
methods the more realistic situation in vwhich the gusts are distributed
randomly in the airplene's path. A significant recent development which
overcomes this limitation concerns the introduction of concepts derived
from the field of statistical dynemics. Here, under the assumption that
the random process is stationary and Geussian, it is sufficient to char-
acterize the random distribution of gusty air by a single statistical
quantity, the correlation function. It is then possible to predict quan-
tities like peak load factor, or maximum accelerations on a probability
basis (refs. 8, 9, and 10). The statistical methods still require as
fundamental quentities, however, the responses of the alrplene to step
or sinusoidal gust inputs, so that rather then being superseded, the
analyses described previously for deriving these quantities take on added
importance. For successful application, these methods also require a
depiction of the statistical nature of atmospheric turbulence, and much
effort is currently being devoted to this task (refs. 11, 12, and 13).

In the field of synthesis, a wide variety of proposals has been
advenced for alleviating the effects of gusts. These include the use of
spoilers (ref. 14), geps in the wing (ref. 15), and the wing's aeroelastic
properties (ref. 16) to destroy or offset the increments of 1ift caused
by the gust velocity. Perhaps the most successful study has been that of
Phillips and Kraft (ref. 17). These authors adept the classical stability
analysis of Wilson (ref. 1) and specify that the gust velocity disturbance
be represented by a continuous harmonic function. The resulting methe-
matical simplifications enable them to study a variety of flap and
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elevator arrangements suitable for offsetting not only the increments

in gust 1ift but pltching moment as well. Their results indicate that
with proper selection of gearing and phase between elevator and flap
deflections it is possible to reduce significently the airplanel!s response
in both normal acceleration and pitching velocity to the harmonic gust
input. It remains for further investigations to determine whether inclu-
sion of the transient 1ift functions in the equations of motion or a 4if-
ferent portrayal of the gust inputs would result in appreciably different
conclusions. :

The present paper has two purposes, the first pertaining to analysis,
the second to synthesis., First, in view of the widespread use of simpli-
fying assumptions and approximations in gust response analyses, we con-
slder the most prevalent of these in the light of more precise solutions.
Accurate numerical results are presented for the responses in normal
acceleration and pitching velocity to step and harmonic gust inputs for
a rectangular wing flying at near-sonic speed. These resulis are com-
pared with results containing the commonly used approximations and the
validity of each approximation is assessed. Second, we wish to adapt to
the gust alleviation problem a powerful synthetic development in statis-
tical dynamics, not yet as widely used by aerocdynamicists as the statis-
tical methods of analysis previously cited. This 1s the optimum filter
theory of Wiener (ref. 18). Wiener showed that if certain statistical
information is given about the character of message and random noise
inputs to a linear system, one can design & filter which acts to suppress
the nolse so that & mean-square error, specified to be & measure of the
failure of the system to follow the message, is minimized. The analogous
terms In the gust alleviation problem are obvious: The noise corresponds
to the random distribution of gusty air, the message to the desired path
of the airplane, and the filter to the characteristics of a controlling
device which operates to minimize the airplane's response to the gusty
alr. Herein, the Wiener theory is applied to the gust alleviation prob-
lem to derive the transfer function of a control system which minimizes
e linear combination of the alrplane's mean-square-normal acceleration
and mean-square pitching velocity. A trianguiar wing flying at & high
subsonic Mach number is used as an example in numerical calculations to
assess the effectiveness of the control system in reducing the airplene's
response to a specified statistical distribution of atmospheric turbulence.

NOTATTON
A aspect ratio
11t
1lift coefficient
2 qws
C pitching-moment coefficient, BECCHing moment
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airplane pitching moment of inertia
imaginary part

Mach number

real part

wing area

flight speed

gust autocorrelation function (eg. (38))
weighting perameter in definition of mean-square error (eq. (33))
wing root chord

base of natural logarithms

stiffness factor (eq. (15))

N -1

airplane mass

Qe

dimensionless pitching velocity, c

<

dynemic pressure, % PV
varigble of Laplace transforms
time

gust vertical velocity
Cartesian coordinates

distance in root-chord lengths of aerodynemic center from center
of gravity

distance in root-chord lengths of control force from center of
gravity

angle of attack
g
Vv

M3-1
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V4 flight path angle
2 mean~-square error
€ dimensionless inertia parameter,
QoS
. my2
n dimensionless mass parameter,
deSC
e angle of pitch
A reduced frequency, % %X (angular frequency)
M damping factor (eq. (15))
[ mass density of free stream
P chord lengths of travel in time t, %;
Superscripts
d
' —
o 50
' d
O 20
()* complex conjugate
]
Y YRy 1
mean value, defined as f =1lim — f(o)d
) : (@) = Jam eq,[ (g

When «, &, and q are used as subscripts a dimensionless derivative
is indicated, and this derivative is evaluated as the independent variable
approaches zero. Thus

_ (Cn _ (2w _(9_0_1_11
o - B°">a,->o’ Cm&-gic_> > Omg = 9 450
v
& ->0
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ANATYSIS

Airplene Motions in Response to Sharp-Edge Gust

Consider an airplsne which moves forward in level steady flight and
suddenly encounters a uniform field of vertical velocity. The boundary
of the field is oriented parallel to the airplane!s lateral axis and
extends on either side beyond the widest span of the sirplane. This is,
of course, the mathematicael idealization of the sharp-edge gust. As the
airplane penetrates the gust front, loading develops on that portion of
its surface influenced by the gust. The loading may be resolved into
time-varying force and moment excitations which disturb the airplane's
equilibrium and cause it to undergo & plunging and pitching motion. Our
purpose will be to calculate this motion as a function of chord lengths
of travel ¢, letting ¢ = O correspond to the instant when the foremost
point of the airplane just penetrates the gust front.

Coordinate system.- In sketch (a) is shown the position of the alr-
plane at an instant when only a portion of the airplane has penetrated

x4

' .
Sketch (a) '

the gust front. As shown in the sketch, an x,y,z coordinate system 1s
placed in the airplane, the origin being fixed at the center of gravity.
The instantaneous direction of the path of the center of gravity relative
to still air is indicated by the direction of the flight velocity vec-
tor V; we assume that the magnitude of V remains constant throughout
the motion. The positive branch of the x axis is rearward and alined
with the chord line of the wing. The y axis is perpendicular to the
vertical plane of symmetry and coincides with the lateral axis running
through the center of gravity; the 2z axis lies in the vertical plane of
symmetry, perpendicular to the xy plane. We define the angle of attack
o to be the angle between the xy plane and the plane containing the
velocity vector; the angle of pitch 6 1is the angle between the xy plane
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and the horizontal plane. The flight path angle ¢ 1s the angle between
the horizontal and the plane containing the velocity vector; it is equal
to 6-a. Finally, the gust velocity is indicated by wg, and is measured
relative to still air. All quantities are indicated in sketch (a) in
thelr positive directions. Forces are measured positive upward, whereas
pltching moments are positive when tending to increase the angle of pitch.

Equations of motion.- In this analysis, the indicial function concept
will be used to write the equations which define the airplane motion.
Since this will involve the use of both the superposition principle and
the results of linearized unsteady-flow theory, the applicability of the
analysis will be limited by the conditions under which their use can be
Justified. Hence, for example, disturbances and angular displacements
must be small. It follows that the equations of motion may be written
as

£ forces

I

my2
— 7' (9)

I (%)2 a'(9)

vhere the independent variable is chord lengths of travel ¢. The forces
end moments to be summed are of three types, those caused (1) by varia-
tions of the angle of attack, a(g); (2) by variations of pitching veloc-
ity, a(@); end (3) by the gust velocity, Wg. If the indicial 1lift and
moment responses corresponding to step changes in each of the variagbles
a(9), a(p), and w, are given, the forces and moments due to variations
in these quantities may be built up by use of the superposition integral
(cf., for example, ref. 19). For the case wg = constant, equations (1)
may be written as

(1)

% pitching moments

? ? )
7' (o) =d—fpfocIm(§)a(cp-§)d§ * g | Cug(8)ale-£)as + daglr, (o)
0 o ) (2)
2’ (0) = = f Cng (8)e(0-£)38 + &= f Cng(£)a(0-£)aE + laglnmg(o)
J
where

Cr(9) ; Cmy(9) indicial 1ift and pitching-moment responses to unit step
change in angle of attack, a

CLq(Q), qu(Q) indicial 1ift and pitching-moment responses to unit step

change in dimensionless pitching velocity, gq =.%;
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CL.(9), Cm (p) 1indicial 1lift and pitching-moment responses to unit step
& & change in dimensionless gust velocity

W
log step change in dimensionless gust velocity, —V&

Equations (2) are a pair of integral equations involving the unknown
veriations a(9), a(9), 7'(9). Any one of these may be eliminated by use
of the equality 6 = a+y. We shall be interested mainly in the normal
accelerations and pitching velocities experienced by the airplane, and
hence choose to eliminate «. Further, it will be found advantageous to
separate out the steady-state values of the indicial functions. Thus, let

N
Cro (@) = Cry(=) - Fi(e)
L, (@) = Cr (=) - Fa(9)
ta 4 (3
C,(P) = Cmg (=) - Fa(9)
Cmy(@) = Cmg() - Fa(o)
J

The quantities C]'_G(oo), ch(oo), Cma(“)’ and Cmq(°°) are the steady-state

values of their respective indicial variations, and hence are also equal
to the stability derivatives bearing the same subscripts. Substituting
the expressions (3) in (2), carrying the derivatives through the integrals,
and using the facts that «(0) = q(0) =0, a'(9) = a(ep) - 7'(p), we get
for the equations of motion .

W

P
7' () = Cza(w)j[q(g)-f(é)]dg + Cprq(=)ale) -
[}

? 9
fFl(g)[q(cp-g)—y'(cp-g)]dg -fFa(g)q'(tp-g)dg + LogCr, (o)
o

o > (%)

9" (@) = Cn(=) [ Ta(8)=7"(£)14¢ + Cng(=)ale) -

P P
v (- - ' d
£Fs(§)[q(&§) 7' (p-£)lag foF4(§)q (p-8)at + logCm,(9)

J
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Transformed egquations of motion.- Equations (h) can be solved for

the unknown quentities y!'(¢) and q(@) by the use of Laplace transforms.
With the notation

[o0]

LIF(9)] =je’sq’F(q>)d<p (5)
(o]

let

Lly'(9)]1 = sT(s)
Lla(e)] = Q(s)
Licr ()] = ch(s) > (6)

IJ[ng(Q)] = cmg(s)
LIFi(p)] = £i(s), i=1,23,k

J

Cerrying out the tramsformations (6) in equation (4) and solving for sI'(s)
and Q(s), we get

sI'(s). S[?Lg(s)ﬁ(s)“ mg(s)B(S)]
log — A(s)D(s)-B(s)C(s)
f (7
a(s) _ [emg(s)A(s)-cpg(a)C(e) | -
log — A(s)D(s)-B(s)C(s) )

where
A(s) = s[n-f1(s)] + Cpy(«)
B(s) = s2fz(s) - 8[Cry(x)-f1(s)] - Crg(w)
- 0(s) = -5%3(5) + Oy ()

D(s) = 82[£+£4(s)] - 8[0mg()-Ta(s)] - Cmg(es)
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Stability derivative analysis.- Since we shall be interested in com-
paring the transient responses that result from solution of the exact
equations (7) with those resulting from approximste formuletions, it is
instructive at this point to obtain the transformed equations which derive
from the approximete but more familiar stability derivative analysis. In
the latter case the equations of motion (in terms of chord lengths of
travel) mey be written

7' (@) = Cr (®)ale) + Cr.ot(e) + Cry(=)a(e) + loglr(o)
£a' (@) = Cpy(=)a(®) + Cuga' (@) + Cng(=)ae) + luglng(o)

(8)

where CL& and. Cm& are the (constant) stability derivatives due to uni-

form vertical acceleration. Usually, in stability analyses, the terms
CLqﬁw) and. CL¢ are discarded; they will be retained here, howéver, in

order to demonstrate fully the degree of correspondence that exists
between equations (4) and (8). Further, in some gust enalyses, the indi-
clal gust functions CLg(Q) and ng(m) are replaced by constants, equal

to their respective steady-state values, Qﬁm(w) and. Qmm(w). The effect
of this approximation will be considered subsequently.

Teking Laplace transforms in equation (8), eliminating o as before,
and solving for sI'1(s) and Qi(s), we get

sr'1(s) B[ch(s)Dl(s)'cmg(s)Bl(s)] w
lag . A1(s)Di(s)-Ba(s)Ca(s) :
’ 9)
Q1(s) _ s[gmg(s)Al(s)-ch(s)Cl(s)]
log A3 (s)Da(s)-B1(s)Ca(s) J

where

Ba(s) = s(mlr) + O (=)

Ba(s) = -8[0Ly(w)4Crg] = Cry(e)
C1(8) = Cmy (=) + sCmy

Da(s) = 82 - 8[0ng(=)+Cng] ~ Cug ()

and the subscript 1 i1s Intended to distinguish the quantities from
their exact counterparts in equation (7).
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In order to make clear the approximations that are implicit in the
use of equations (9) let us now derive equations (9) from the exact equa-
tions (7). To do this, expand the exponential e~8%P in a power series
in s in each of the functions £4(s) in equations (7). Thus, for
example, for the function f3(s) we have

fa(s) =st(cp)dcp - SfmFs(m)d¢+ 82f ¥ re(@do - . . . (10)
o o O

Now it is known (cf. ref. 20) that the first term in this expansion is
equal to -Cp., the pitching-moment coefficient proportional to the
motion (@) = constant. By a slight extension of the development of
reference 20, one can go on to show that the remsining coefficients in
equation (10) are likewise stability derivatives corresponding in order

to the motions «''(9) = constaent, a!?'(¢) = constant, etc. The same is
true for the other indicial function transforms, and in fact the following
identities can be shown to hold:

N
aj(:i) ) (_l)nf% Fi(p)dp ; n21
gz%;)‘ = (-1*® : (;Plj;)l! Fa(0)dp
. ? ()
ai((ji) - (7 A (f_l  Fa(0)de
aa((}i = (07 o (qﬁ)! Fa(9)dg
y

When the forms (10) and (11) are substituted in equations (7), comparison
of the result with equations (9) reveals that the latter equations are
the result of retaining only the constant terms of the expansions of
£1(s) and fz(s).

One is,tempted to propose that the transient responses resulting
from solution of equations (9) would agree more closely with those of
equations g7).if»some of the higher-order terms were to be included in
equations (9). Such a proposal is incorrect, however, for the following
reason: Retention of terms of order s and higher raises the degree of
the denominators of equations (9) and hence the number of roots. The
number of requirements for stabllity is therefore also raised, and it can
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be shown that these added requirements are spurious. In fact, the only
stability requirements that are consistent with those of the exact equa-
tions (7) are those which exist for the forms (9). Therefore, we shall
consider that the correct form of the stability derivative equations is
that vhich stends in equetions (9), and we shall meke our subsequent
comparisons on this basis.t

Solutions for 7'(9) and q(@).~- The inversions of equations (7) give

the complete histories 7'(¢) and q(@) subsequent to the airplane's first
penetration of the sharp-edge gust. Unfortunately, for most cases of
interest, the equations for the indicial functions are so complex as to
preclude ettempts at direct inversions of equations (7). Several alter-
native techniques have been proposed. One such technique, which appears
attractive for application to supersonic speeds, should be specifically
warned against. Since the supersonic indiclal functions reach constant
values in a finite time, all approximations which take this behavior into
account result in transcendental Laplace transforms of the type f£(s)e™87,
where ¢ 1is a constant. One is then tempted to expand the exponential
function in a series of polynomials in 8. It has been demonstrated

(cf. refs. 21 and 22) that expansions of this s0ort, in which higher-order
terms are retained, lead to fallacious results. An expansion technique
that 1s valid and applicable to both subsonic and supersonic speeds is

to put equations (7) into the form g(s)/l+k(s), expand in the series,
g(s) [1-k(s)+k2(s) - . . .] and invert term by term. This gives a series
of convolution integrals which can be shown to be equivalent to the
Liouville expansion used by Lomax in reference 7. The method is easy to
apply but becomes excessively tedious if more than three or four terms

of the series are required to insure adequate convergence. Rather than
adopt this method, we shall make use of one recently presented by Huss
and Donegan in reference 23. Here it is necessary to have the response
to harmonic inputs of the system with the desired tremsient response.
Having this information, one can, by comparatively simple and raplid numer-
ical operations, extract the transient response to any desired accuracy.
Therefore, rather than attempt to calculate the transient responses
directly from equations (7), we turn instead to the calculation of the
harmonic responses.

Alrplane Motions in Response to Harmonic Gusts

It is well known (cf., for exemple, ref. 24) that the harmonic
response and the transient responses to step or impulsive inputs are
closely related. Having given the Laplace transforms of the step responses
in equations (7) we may write down the harmonic responses directly from
them by means of the relations

1If desired, one can retain the terms OCL/dq', OCm/dq' in equa-
tions (9) since their retemtion does not raise the degree of the denomi-~
nators. Their effect, however, is negligible.
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W
7t ) = "82r(s)
Z @ - | “%}sm |
(12)
2o -[32]
s=1A

- T8

)

where A\ 1s the (dimensionless) frequency of the harmonic gust input.

Exact and approximate solutions.- Equations (12) are valid under
the restriction that the Laplace transforms in equations (7) sI(s)/lug

and Q(s)/lag represent stable transfer functions. Assuming this is
true, we may write the exact harmonic responses as

— 2 : -
7 iy - A [ch(ix)D(i)\) cmg(n)B(i)\)]
ag A(IA)D(4A) -B(iA) C(1A)
> (13)
- 2 -
. A [cmg(n)A(n) ch(n)c(m}
Og A(AN)D(AA) -B(AN) C(1N) J
where
A(IN) = iNn-£2(41N) ] + Cp (=)
B(iA) = -N3f2(1A) - i?x[CLq(w) ~£2(IN) 1 - Cry ()
TC(4N) = -INg(iA) + Cpy ()
D(iA) = -A2[E+fa(iN)] - i%[qu(w)-fs(i%)] - Cma(«o

Likewise, of course, the harmonic responses as derived from the stability
derivative asnalysis carry over fram equations (9):

1 (1) = '7‘2[0]'_,8(17\)]31(17\)-cmg(ﬂ\)Bl(ix):l
“g Ay (ANYDL (1) -B1(1A) C1(dN)
} (1%)
Gy . -\ [cmg(iK)Al(i?\)—ch(i?\)cl(i)\)] ,
g A2 (AN)D1(1A) -B1 (1) C1(1A) )
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where
A1(IN) = IM' + Opg(®) 5 ' = n+ Crg
B1(iA) = ~IA[Cpg(=)+C1g] - Crg(x)
C1(i7A) = 1NCmy + Cy(e) _
Dy(iA) = A% - IN[Cpg(0)+Cmg] - Cmg ()

and, as before, the subscript 1 distinguishes the quantities from their
exact counterparts in equations (13).

Numerical solutions.~ With the use of equations (13), it is possible
t0 compute exactly the harmonic responses in normal acceleration and
pitching velocity of those wings whose indicial 1ift and moment responses
to step changes in gust velocity, angle of attack, and pitching velocity
have been calculated. For supersonic speeds, the necessary solutions are
available for the two-dimensional wing (refs. 25 and 26), the rectangular
wing (refs. 27 and 28), and the supersonic-edged triangular wing (refs. 29
and 30). For use in equations (13) these solutions must be transformed
to functions of A Dy means of equation (5) (with s=iA). In order to
facilitate the use of equations (13), the transformations have been
carried out for the three classes of wings. The results are compiled in
Appendix A.

Comparison of Exact and Approximate Step and
Harmonic Gust Responses

Having solutions for the exact harmonic responses and a convenient
method of extracting from them the transient responses (ref. 23), we are
now in a position to study the effects of some of the approximations and
assumptions commonly mede in gust analyses. In order to examine these
effects under conditions where they might be expected to be important,
_numericel calculations for the step and harmonic gust responses have been

carried out for a rectangular wing of aspect ratio 3 flying at Mach num-
ber 1.2. The reason for this choice of Mach number was that it is prin-
cipally at speeds near the sonic speed that the indicial functions show
large variations. Hence, approximations to the indicial functions would
be expected to be least valid there. The rectangular wing was chosen for
study because of the necessity of having available a complete set of theo-
retical indicial functions applicable to Mach numbers near unity. It is
recognized that for tailless airplanes the delta plan form would have
been a more appropriate choice than the rectangular wing that was selected.
The numerical results are therefore somewhat unrealistic; nevertheless;
the conclusions to be drawn here regarding the validity of approximate
solutions may reasonably be expected to apply as well to other more
practical plan forms.
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Harmonic responses.- Figures 1 and 2 show the wing's normel. acceler-
atlion and pitching velocity responses to harmonic gust inputs as calcu-
lated from the exact tramsfer functions, equations (13), and from the
approximate stability derivative formulation, equations (14). The con-
stants which define the airplane's inertial properties are n' = 100,

f = 100; the center of gravity is located at the wing leading edge. It

is apparent that except in the vicinity of the peaks of the curves, the
approximete stability derivative results provide excellent representations
of the true variations. It will be recalled that there were essentially
two assumptions involved in the use of the stability derivative expres-
sions; first, that the contributions of the functions f£o(iA), £4(iA)
could be neglected, and second, that the contributions f£3(iA), f3(iA)
could be replaced by the constants 'QLi and -Cp.. It has been determined
that such differences as do appear between the exact and approximate
results are caused almost exclusively by the second of these assumptions;
hence, neglect of the contributions of the indicial functions due to
piltching velocity is found to be . Jjustified. As for the discrepancies
caused by the second assumption, it should be noted that the frequency
band over which they occur is very narrow (approximately 0.1<A<0.2).

The differences in areas beneath the exact and approximate curves in this
band are quite small, and hence one may anticipate that the discrepancies
evident on figures 1 and 2 will cause only insignificant differences in
the corresponding transient responses.

Step responses.- Figures 3 and 4 show the transient responses in
normal acceleration and pitching velocity to a step change in gust veloc-
ity as calculated from the harmonic responses and the use of reference 23.
It is clear that in the importent features of the curves, namely, the
maximum magnitudes and the points at which they occur, the differences
between the exact and approximate results are not significant: The values
of @ at which the maximum values of normal acceleration and pitching
velocity occur are given by the approximate results almost without error;
the error in maximum normal accelersation is less than 10 percent, whereas
the error in maximum pitching velocity is hardly measurable.

Approximations to gust functions.- It may be instructive to point
out that the conclusion to be drawn from the preceding section, that the
use of stabllity derivatives in place of indiclal functions is valid, is
more generel than is first apparent. The denominators of equations (7)
form the "characteristic” part of the transfer functions - that is, the
part that does not change with the type of excitation function. Having
shown that stebility derivatives may be used in the denominators without
serious damage to the responses, we may expect that similar good results
will be found for the responses to many other types of excitation. The
effects of approximations to the excitations themselves, however, (in
this case the gust functions) still remain to be studied.

It has been customary in some gust analyses to replace the gust
functions CLg(Q) and ng(Q) with step functions, equal in magnitude to

their respective steady-state values Clufw) and Qm@(w)- Thus, in the
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transfer functions, equations (9), the transformed gust functions cr, (8)
(24
and cmg(s) are replaced by the terms CLm(m)/s and Cma(m)/s. The advan-

tage is, of course, that now equations (9) are easy to invert. The
results for the transient responses are

I;_;_ (9) = tCr (=R (9) + MR(9)

(15)
— (9) = A=R(9)
S

where

1 o
R = ——e gin ki
(@) oE P

At =1+ O,
o= | oo (ongeons) +CLqu&'°mq°Ia]
-nCmQ,+CL Cma-cchlu >

=
n

A1 = Cm, <ch+%> - O, (cmqafcma)
A2 = 0Cny, - CLyCmg

These results are compared with the exact transient responses also in
figures 3 and 4. It is clear that in this case the errors, at least in
the normal acceleration response, may be significant; the meximm value
of normal acceleration, for example, is overestimated by 25 percent. The
errors in pitching velocity (fig. 4) are not as large; however the nature
of the response for small values of @ is not correctly preserved, so
that large errors will appear in the pitching acceleration response. As

a saving feature, it is noted that the errors caused by the substitution
of constants for the gust functions will diminish In severity with increas-
ing supersonic Mach numbers, since the gust function variations do in fact
rapidly approach steps for larger Mach numbers.
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Neglect of pitching.- Since the loads caused by normal accelerations
are in general more severe than those caused by pitching, many investiga-
tors have neglected the airplane's pitching degree of freedom altogether
and assumed that the airplane is free to move only in the vertical direc-
tion. In order to investigate the validity of the foregoing assumption,
numerical calculations have been carried out for the same operating con-
ditions as used above, considering that the airplane is now restrained
from pitching. 1

The exact harmonic response may be derived from equations (13) simply
by letting the inertia parameter ¢ approach infinity. The result is

A2 iA
?Lg( )

= 16
) IA[n-£1(1N) J+Cr, () (o)

7!

2= (4A
Likewise, the harmonic response as obtained from the stability derivative
formulation (egs. (14)) is

-xchg(ix)

iAn ("“‘CIG,)““ Cr, ()

The corresponding transient responses may again be extracted from these
results by use of reference 23. Numerical results for the harmonic and
transient responses are shown in figures 5 and 6.

%%L (iA) = (1)

Note first in both figures 5 and 6 that, as in the previous cases,
the differences between the exact resulits and those obtained fronm the
stability derivative formulation are not significant. Next, compare the
transient response for the single degree of freedom motion (fig. 6) with
the exact response when pitching is included (fig. 3). It is noted that
neglect of the pitching degree of freedom causes the maximum value of
normal acceleration to be overestimated, but by only about 12 percent.
Hence, use of either of the single degree of freedom equation (16) or

. (17) to predict maximum normal acceleration is probaebly Jjustified. It

may be necessary to point out, however, that even though the effect of
the pitching degree of freedom on the maximum value of normal acceleration
is small, the use of equation (16) or (17) rather than (13) or (14) will
generelly prevent one from obtaining the true nature of the remainder of
the transient response curve. The reason for this can be most clearly
seen by comparing the denominator or characteristic part of equation (17)
with that of the equation in which the pitching degree of freedom is
included, equation (14). The denominator of equation (17) is of first
degree in ), whereas that of equation (14) will be found to be of second
degree. The transient response corresponding to equation (17) will there-
fore always be a subsidence whereas the transient response corresponding
to equation (14) will most generally be oscillatory.
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Concluding remarks.- The major conclusion to be drawn from the
results of this study is that the use of the stability derivative formu-
lation of the equations of motion does not significently impair the accu-
racy of the solutions for transient and harmonic responses. It should
be pointed out that the test case chosen for study represents conditions
under vhich the differences between the exact and approximate formulations
might be expected to be most apparent. In view of the excellent agreement
between the two results, it should be anticipated that the stability deriv-
ative formulation will yield accurate results over a wide range of operat-
ing conditions and for many other types of plan forms.

SYNTHESIS

It is clear that since most gust disturbances are random in nature,
this fact should be considered in & realistic analysis of the alrplane's
response to gusts. 1In recognition, a number of authors have studied the
problem end have shown how the step and sinusoidal gust responses can be
adapted to serve in the analysis of random motions as well (refs. 8, 9,
and 10). The methods are based on concepts derived initially in the
field of communications theory; their use 1s valid under the assumption
that the disturbance mechanism cen be described statistically as a sta-
tionary rendom process (ref. 24). As applied to the gust problem, the
assumption appears to be a reasonable one in the light of evidence avail-
able from experimental studies of atmospheric turbulence (refs. 11, 12,
and 13).

There is still another aspect of communications theory, however,
valid within the same assumption and building on the same methods, which
has not yet received wide attention in aerodynamic applications. This
is the optimum filter theory of Wiener (ref. 18). The theory differs in
emphasis from those mentioned earlier, in that the aim is to synthesize
a system which minimizes responses to unwanted random disturbances; in
contrast, the aim above is to analyze the responses of a given system.
The connection between the aim of the Wiener theory and of gust allevia-
tion is evident. In view of the gains possibly to be realized by devising
a gust alleviation system which takes into explicit account the actual
random nature of gust disturbances, consideration is given below to the
adaptation of the Wiener theory to this end.

General Considerations

In the following general discussion of the gust alleviation problem
several assumptions will be made regarding the aveilability of the quan-
tities which are needed in order to define and solve the problem, It is
believed that these assumptions are reasonable; however, in view of the
exploratory nature of the study, questions concerning practical realiza-
bility of the quantities will not be considered.
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Gust alleviation problem.- The problem to be considered can be °
illustrated by means of the block diagram in sketch (b). As indicated

Gust measuring
device l Gust
Gust Control Control Airplane
! S : —
"| system force and Airplane path
moment
Sketch (b)

in the sketch, it 1s necessary that the airplane be equipped with a gust
sensing device which sends to the control system & signal proportional
to the gust velocity. It will be assumed that in response to commands
from the control system there can be supplied a force and a moment which
operate independently. It willl also be assumed that the statistical
nature of the gust disturbance is known, and that the responses of the
airplane to step changes in the gust velocity and the control force and
moment are known. Given this information, the problem is how to design
the block labeled "control system" so that the force amd moment it con-
trols will counteract as nearly as possible the forces imposed by the
gust so as to minimize the deviations of the ailrplene path from a desired
path.

Here, it will be desired that the airplane fly a straight path,
without pitching. It will be considered that the airplene motions most
pertinent to the problem are the variations in normal acceleration and
pitching velocity. With these specificetions, a more explicit represen-
tation of the problem can be constructed as in sketch (c).

The block representing the control system in sketch (b) is now indi-
cated by the two trensfer functions Kp and Ky which send commands, respec-
tively, to the control force and control moment. These commands are in
response to signals from the gust sensing device. Similarly, the block
representing the airplane in sketch (b) is indicated by the six transfer
functions, relating inputs in control force, control moment, and gust
velocity to the outputs In normal asccelerstion and pitching velocity.

The net airplane motions 7! and q are of course the sums of the sepa-
rate responses to the force, moment, and gust inputs; this is indicated
in sketch (c) by the Junctions marked with positive signs.
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Bquaetions of motion.- If we say that the blocks in sketch (c¢) are
representative of the responses to step changes in the various inputs,
then for arbitrary variations of the inputs, the system's equations of
motion can be written by a straightforward application of the superposi-
tion integral. Thus, as functions of chord lengths of travel ¢, the
airplene motions '(9), a(q) are

P P N
) =2 [ L (p-t)P(e)ae + = [ 2o (g-£)M(¢)a
7' (9 dcpfomcp- +dq)£m(cp)()§+
a -
Y
I 0-1;1; (p-£)ag(t)at > -
. P P
=4/ 9 4 [ 2 (e
a(e) = o). T (p-£)F(£)AE + dq)j; T (p-g)M(&)dE +
o
4 2 (0
d—QJ; Tag (p-8)ag(g)at J
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Similarly, the control force and moment variations can be written
7 )
a
Flo) = -—fKF(CP-E)ag(g)dg
doJ,

® $ (19)
M(p) =.d—fprM(q>-§)ag(§.)d§

e

1
The quantities Eﬁf (o), Ei_ (9) in equations (18) are the responses in

normal acceleration and pitching velocity to a step change in dimension-
less gust velocity Qg s and hence are identical to the responses consid-

ered in detail earlier in this report. ILikewise, the quentities 7 (),

(@), (9), L (¢) are the responses to step changes in force and

moment inputs, their derivation is entirely amnalogous to that of the gust

responses. Finally, the quentities Xp(9), Kq(9) in equations (19) are
the responses in control fortée and control moment, respectively, to a
step change in the gust velocity. These quantities are the ones which
are to be constructed such that the responses to random gusts are
minimized,

Teking Laplace transforms in equations (18) and (19), we get

N
sT(s) = [Ssz(s)] £(s) + [52—%3] m(s) + [SEP(S)] Ag(s)

Q(s) = [S?F(B)] £(s) + [5%(151] m(s) + [SQ(S)] Ag(s)

il o
£(s) = ;skF(s)— Ag(s)
n(s) = |siys) | 4o
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where
£(s) = LIF(9)]
m(s) = L[M(p)]
Ag(s) = Lilag(®)]
ki(s) = Liki(e)l, 1 =F,M

The bracketed quantities in equations (20) are the “system functions" of
the various responses; they are equal to the transforms of the responses
to impulsive inputs. Thus, for example, if Q(s)/1F 1s the Laplace
transform of the response in q(@) to a step change in F, then sQ(s)/1F
is the transform of the response in q(@) to an impulsive change in F.
In order to simplify the notation, let the system functions be

Gi(s) = sziés) Hy(s) = S$§S)
co(e) = EHE m(s) = 2Ae

s2r(s) sQ(s) (21)
() - T2 me(e) = T

X(s) = sky(s)

Y(s) = sky(s)

J

Substituting equations (21) in (20) and solving for sI(s) end Q(s), we
get

[G1(s)X(8)+Ga(s)¥(5)+Ga(s) 1Ag(s)
[H1(s)X(s)+Ha(8)Y(s)+Hs(s) JAg(s)

sr'(s)
(22)

Q(s)

Perfect Alleviation

Before considering the application of Wiener theory to the gust
alleviation problem it is instructive first to study the possibilities
of perfect alleviation. By perfect alleviation we mean that the control



NACA TN 3290 23

system operates so as to reduce the airplane responses in normal acceler-
ation and pitching velocity identically to zero for all, including random,
gust inputs.

Reduction’of motions to zero.- We note in equations (22) that,
irrespective of the type of gust input, in principle it is possible to
reduce identically to zero the airplane's response in both normal accel-
eration and pitching velocity. Thus, for any Ag(s), sI'(s) and Q(s) are
zero 1f

(5) = Hs(8)Gz(s) -Ha(s)Ca(s)

X(s) =
Gy(s)Ha(8)-Go(s)Ha(s)
) (23)

_ Hy(8)Go(e) Fa(s)Ca(s)
Gy(8)Ha(s)~G2(s)Ha(s)

Y(s)

On reflection, this result is obvious; in effect it simply specifies that
the control force and moment supplied in response to a step gust must
exactly balance the force and moment imposed by the gust. Clearly, if
the control system is capable of canceling the step gust input it will
cancel all other gust Inputs as well, since these may be viewed merely
as successions of steps.

Alleviation with one control.- In view of the obvious complexity of
a control system that might be built according to equations (23) we con-
slder next the posgsibility of perfect alleviation when only one control
is provided. Thus, we eliminate the independent control pitching moment
Y(s) in equations (22) and consider that only the control force (and its
accompanying pitching moment) is available for counteracting the forces
and moments imposed by the gust.

With ¥(s) = O, equations (22) become

sP(s) = [G1(s)X(s)+Ga(s) 1a4(5) (o)
Q(s) = [Hi(s)X(s)+Ha(s)144(s)
Perfect alleviation is still a possibility in the event that
X(S) - - G3(s) _ Ha(s) (25)

Go(s)  Hi(s)
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In general, this will not be the case, as can be seen if it 1s recalled
that in order to provide for perfect alleviation the force and moment
imposed by a step gust must be canceled exactly. Now the force due to

a step gust will in general build up monotonically from zero to a steady-
state value vwhereas the pitching moment will change sign some time after
the center of gravity of the airplene has passed through the gust front.
Therefore, since for most types of aerodynemic controls the center of
resolution of the force will remain essentially fixed, the single compen-
sating force in general will not be capable of canceling both the gust
force and gust moment simultaneously.

One such case may be said to exist, however; that is, when the gust
force and moment build up so rapidly as to be essentially steps. Exact
cancellation is then theoretically possible if the control force is placed
at the airplane's aerodynamic center. This result (and also a result
corresponding to eq. (23)) is in effect the solution given in reference 1T7.
As indicated earlier in this report, the step approximation to the gust
force and moment inputs should become increasingly valid as the flight
Mach number increases sufficiently beyond unity, so that the analysis pre-
sented in reference 17 may apply even more approprietely to flight at very
high speeds than it does for the speed range considered therein.

Application of Optimum Filter Theory

Although the solutions given by equations (23) and (25) are satis-
factory from a theoretical standpoint, practically there are several
objections to them. First, it is clear that the system's response must
be both very rapld and precise in order to supply forces and moments
matching those of the gust. Second, it may be argued that there is little
point in attempting to build a system that in effect cancels gusts of all
frequencies, since, even if no alleviation is provided, the airplane's
inertia will prevent it from responding noticeably to gusts having fre-
quencies very much larger than the airplene's natural frequency. Since
We presume to possess some knowledge of the probable distribution of fre-
quencies in the gust velocity, an alternate approach is to try to lighten
the task of the control system by asking that it cancel only those fre-
quency components of the gust velocity that actually do cause large normal
accelerations and pitching velocitlies. The attractiveness of the Wiener
theory of optimization is that it specifies Just how to do this in order
to satisfy a given criterion of excellence. ,

Responses to arbitrary control-force and gust velocity inputs.~- In
the subsequent study, we again assume that a single control force is
available for counteracting the forces and moments imposed by gusts.
Further, we shall assume that the step approximation to the gust func-
tions is not valid so that the possibility of perfect alleviation is
excluded.
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Let us rewrite equations (24) as

sT(s) = Lo(s)g(s)

. (26)
Q(s) = La(s)Ag(s) )
where
Li(s) = Gi(s)X(s)+CGs(s)
Lo(s) = Hai(s)X(s)+Ha(s)

Tt 1s clear from the form of equations (26) that the quantities IL,(s)
end Lo(s) may be interpreted as over-all system functions; they relate
the outputs in y!'(9) and a(p) to the gust input while the control is in
operation. '

A linear relationship exists between Ig(s) and Lo(s). By elimina-
tion of X(s) it may be found to be

La(s) = p(8)La(e) + o(s) (27)
where
Hy(s)
o(s) .= G;L ) |
_'G1(s)Ha(s)~Ga(s)Ha(s)
e = Gi(s)

The quantities p(s) and o(s) are of course known, involving as they do
the known system functions Gi(s), Hi(s).

Now return to the physicel domain. Let

12(0) = L La(s)] ]

o(9) = LM La(s)]1

R(g) = L~ [p(s)] > (28)
S(9) = L™*[o(s)] )
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From equation (27)

12(9) = L™ [p(s)La(s)+o(s)] (29)
80 that! letting
P
B(9) = L [p(s)La(s)] = f R(E) 1o (-8)at (30)
(o]
we have
12(9) = P(9) + S(9) (31)

Finally, from equations (26)

7' (o) =f 12(8) g (-E)at
o
(32)

a(e) = f 12(8)ag(o-t ) at
(o]

It will be noted in equations (32) that we have used a more general form
of the superposition integral than heretofore. The reason for this is
that we wish to invoke the assumptlon usually made in random processes,
namely, that the process has started infinitely distant in the past.
Consequently, for an arbitrary origin of ¢, the existence of inputs for
negative arguments must be admitted, and this is accomplished in equa~
tions (32) by letting the upper limits of the integrals approach infinity.

The error.- Equations (32) represent the variations in normal accel-
eration and pitching velocity caused by arbitrary inputs of gust velocity
and the unknown compensating force. It is desired to minimize these
variations according to some criterion when the gust inputs are random.
We shall take as our error criterion a linear combination of the mean-
square values of the variations 7'(p) and q(9) over the infinite inter-
val. We choose to minimize a combination of the motions in ordexr to
reduce the possibility of arriving only at solutions which minimize one
motion at the risk of intolerably increasing the other. Thus, we seek
to minimize the mean-square error

’e_a' = (q?_) + % (732); a>0 (33)

where a 1s a welghting factor, open to choice depending on vhich it is
thought to be more importent to reduce, y! or q.
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The choice of a mean-square error criterion is of course somewhat
arbitrary. Criteria other than the mean square are possible and may lead
to greater reductions in the variations y'(Q) and a(p). However, its
use in connection with the gust alleviation problem is reasonsable, in
view of 1ts property of weighting the minimization in favor of reducing
the undesirable large errors while permitting many small ones. Also,
1ts form is mathematically convenient, since it leads to an integral
equation that can be solved by known technigues.

Integral representation of the error.- Substitution of equations (32)

in (33) gives for the mean-square error
2
[ [ ta(8)agle-)a | (31

e = Uj zz(g)mg(q>-§)dg]2 "

Expanding the integrals, we have

ol

o] oo

F | [ raleaegeenas [ ateaaglotaasa| +
(o} (o]

o]

[k/\ Zl(él)ag(¢-§1)d§1LZj Zl(ﬁz)ag(Q-Ee)dﬁa] (35)
©

® i

Now by definition
]

£(9) = lim 5% ff(m)dw (36)
O->w
Then in equation (35)
U] o] . . @
e = lim = [f 12(§1)d§l[ 12(E2)og(p-E1)ag(o-E2)dEo +
o> 20 vy o)

%\Z?Zl(gl)dgl\/pZl(§2)@g(¢‘§l)mg(¢'§2)dga] do (37)
o
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The limiting process acts only on ag(¢“§1) since all other terms are
functions only of £3, Ex. We define

0

Un = | aglo-s)aglo-ta)ap = W(ta-te) (38)

This is the autocorrelation function of the random distribution of gust
disturbances. We assume that the function exists, and moreover, that it
is known. Carrying the limit through the integrals in equation (37) and
using (38) we get for. the mean-square error

? =f 22(§1)<1§1f Za(gg)w(gl"g2)d§2 +
(o) o]

o

= fo na(82)ass l (82)W(E2-t2) a2 (39)

Note that the mean-square . error does not depend on the gust velocities
themselves, but rather only on their correlation function.

Equation (39) can be cast in terms of one unknown function P(g)
by means of equations (30) and (31). Thus, in equation (30), let

-] 1
Ro(q)) = L ‘:;'(-S—S'] (40)
Then
P
() = [ P(e)Fole-t)at (k1)
o

The upper limit ¢ is justified here since P(9), Ro(p), and 2.(9) ere
impulse responses and hence must be zero for negative arguments. In
addition, let '

U(Eq) =f S(t2)W(E1-Eo)dEn (42)
o

Substituting equations (31), (41), and (42) in (39), we get
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€2=

S(E1)U(k1)dEr + 2f P(£1)U(E3)dEs +
(o}

L
fP(El)d§1f P(t2)W(E1-E2)dto +
o o

1

o §2

L f dey j P(01)Ro(E1~01)dos [ W(E1-E2)dEo f P(02)Ro(ta~02)don
aJg o o)
(43)

Now in the quadruple integral, reversing the order of integration results

fP(Ul)dUJ.f P(Uz)ddzf Ro(él-dl)dﬁlf Ro(tz-02)W(E1-E2)dEs
o o
Ul 02

Interchanging dummy variables (514—901, tg€—>05), We have

«© o

jc: P(El)d§1£ P(Ez)d§2f Ro(01-§1)d01f'Ro(O'a-Ez)W(O':L-Uz)do'z

E1 €z
[o0] [ee] [oe] [o]

=£ P(gl)dglj; P(ga)dngo Ro(cl)doll Ro(02)W(E1-E2ta1-02)d0n
(Lk)

It is clear from the second of the above forms.that the result of the
. double integration involving Ro(p) is a function of (£;-t,) alone.
Finally, using the second of the forms (44), we combine the last two
terms in equation (43); this gives

fP(El)délfP(Ea)déz W(E1-t2) + %.[Ro(01)dUl\‘[Ro(Uz)W(E.J.—EﬁUl-O’a)dU
o o

(45)

The bracketed quantity in (45) can be shown to possess all the properties
of an autocorrelation function (ref. 24). It is, in fact, necessary that
this be true in order for our subsequent development to hold. ILet this
function be called ¥(£1-£2). Then, returning to equation (43), we find
that the mean-square error becomes
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€2=

S(E1)U(E1)dEs + E‘f P(e1)U(E1)dEy +
o

A
f P(gl)de.l[ P(t2)¥(E1-E2)dEn (46)
(o]

Integral equation.- Since S, U, and ¥ are known functions (cf.
eqs. (28), (42), and (45)) while P dis unknown (eq. (30)), equation (46)
is now of precisely the form considered by Wiener in reference 18. As
shown therein by an application of the calculus of variations, the mean-
square error is a minimm if (and only if) P(p) is constructed such that
the following relation is satisfied:

U(o) +f‘P(§1)Y(cp-§1)d§1 =0; o¢>0 (L7)
A .

Equation (47) is known as a Wiener-Hopf integral equation of the
first kind for the unknown P(@). A generel analytical method for solving
it is described in reference 18 (cf., in particular, Appendix C of ref.
18). Also, several numerical methods now exist (cf., for example, refs.
31 and 32) which can be used to solve equation (47) approximately should
an analytical approach prove impracticable. Hence, we can assume that it
is possible to extract P(¢) from equation (47). Having P(g), ve may
compute 1o(p) from equation (31). The Laplace transform of the control
system necessary to achieve a minimum mean~square error 1s then obtainable
from the relation (see eq. (26))

- Lo(s) -Hs(s) (48)

X
(=) Hi(s)

This is the sought-for quantity - the transfer function of the response
in control force to gust inputs.

The minimized mean-square error, which results when the control-
force system is constructed according to equation (48) masy be found con-
veniently by substituting equation (47) into (46) and using equation (31).
The result is

o0

-G_z—min =J; U(t1) 12(E1)aky . (49)
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Finally, in order to compare the minimized mean-square error with
the error that results when no alleviation is provided (i.e., X(s)=0),
it will be necessary to have the latter result. Setting X(s) equal to
zero in equations (26) and using equation (39), we have for the unmodified
mesn-square error

o

€2 =f hs(ﬁl)dﬁl\_[ ha(E2)W(E1~E2)dEn +

(o]

%_[; Sa(él)df.l‘[ gs(E2)W(E1-E2)dEo (50)

where

L™ [Hs(s) ]
L™ Gs(s)]

hs ()
& ()

Application of Results

It remains to investigate some of the characteristics of a control
system that might be bullt according to the specifications of the theory
Just presented. To be acceptable, one should expect of such a system
at least the following: (1) adequate stability; (2) practical feasibility;
(3) a significant reduction in the mean-square error from the error that
results vhen no alleviation is provided. Unfortunately, these require-
ments are not necessarlly compatible; in order to check them numerical
enalyses must be made, using specific ailrplanes and operating conditions.
We have chosen as an example case a tailless triangular-wing sairplane
flying at a high subsonic Mach number.

System functions.~ Since we have determined in the first part of this
paper that the stabllity derivative formulation is a valid approximation
to the exact equations of motion, we shall use it here to define the
airplane system functions. Further, in the system functions G1(8) and
H.(s), we shall assume that the location of the control force remains
essentially fixed. Thus, for a step control force 1F, the control moment
is -1Fx,, where x5 1s the (dimensionless) distence of the point of
application of the force from the airplane center of gravity. With these
assumptions, the system functions may be derived from equations (9) and
(21). (The functions Gi(s) and Hi(s) are obtained simply by replacing
ch(s) and cmg(s) in equations (9) respectively by 1/8 and -(x5/8).)

The results are
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a5 2= ftagt gt (0rgr0ry )| - (o0rgaca,)

¢nt [(e) %)

Gl(S) =

620 (s) _ 5 {ch(s) [gsz-s <Cmq+cmd)- ]+ Cug(s) [s <CLq+CIa,>+ Clu:[}
la,

Ga(s) =

g tnt [(s+1)24k3)

»(51)
o) < sa(s) = <" x°+°‘"“> (Cm“%%)
En® [(s+1) 24k2]

(o) = ) o |ongle) (1 ov0) - 1 (5! )

lag g0t [( 1) %4x2] J
Wwhere

0" =1+ Crg
b = o[£ (OngrOng)  ing-Ongena|

. o (ncmang:?u-cchlu ) u2>1/.°‘—

It remains to define the gust functions CLg(cp) and, Cmg(cp) whose

Laplace transforms appear in Gz(s) and Hg(s). In the absence of theo-
retical results for these functions spplicable to subsonic speeds, we
shall assume they may be approximated by the expressions

' A

Cr (@) = Cr, (=) hl-e“l)q)(l+pcp)]
(52

Cng(® = g () 1P (uezorae? |
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where p and r are parameters. It 1s emphasized that these are not the
gust functions of any known wing. They are considered to be physically
reasonable, however, and, by virtue of their zero slope at ¢ = 0, are
belleved to be specifically representative of pointed-nose wings. They
are strictly applicable only to flight at subsonic Mach numbers, in view
of their asymptotic approach to steady-state values. The particular Mach
number to which the functions correspond may be varied by changing C]:u(co) s
(), P, and r. As the flight Mach
number is increased toward unity p 3r
should be reduced in value. The
value of r should be chosen so that
Cmg(cp) has its greatest positive 2 C

value near the value of ¢ for which

the airplane center of gravity passes . -Cm

through the gust front. The partic- I\

ular functions which were used in )

numerical computations are plotted in -1 | | ] 1.
sketch (d). 0 0O 20 30 40 50

Finally, the Laplace transforms Chord lengths of travel, ¢

of equations (52), which are to be

inserted in the expressioms for Sketch (a)
Gz(s) and Ha(s), are
: ] )
_ © p=
erg(®) = ()| oz
y  (53)
_ o [p2(s+D) -2rs
“mg(2) = Oy {esE ] :
J/

Stability and the location of control force.- Having defined the
system functions, we next consider the conditions which must be imposed
on them to insure the stability of the alrplane and control system.
First, it 1s a necesslity that the system functions themselves be stable.
In order to insure their stability, it is sufficient to stipulate that
theilr denominators contain no zeroes having positive real parts. This
will be true in all four fumctions provided the damping factor p and
the stiffness factor X2 are positive. These requirements are of course
the usual ones that arise in nearly all dynamic stability analyses.

In addition, we must insure the stability of both p(s) and its
recliprocal, since both enter into the analysis for the optimum control
force (see egs. (30) and (40)). Hence, it is a requirement that both
numerator and denominator of p(s) be free of zeroes having positive real
parts. Now p(s) may be written in the form (cf. egs. (27) amd (51))
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(s) = Hy(s) _1 (s+ca)
P "~ Gi(s) K (souistki®)
where
Koo
7' Xo+Cmy,
_ %0040
t ' Xo#+Cr
1
SR [CEMIN RN
2 1
kB = - -g- <Cma+xoc]-_u>

Then p(s) and 1/p(s) are stable if c3, pi, and k12 are all positive.
We note in equation (54) that ci, w1, and k;® are functions of x,, the
control location, and hence the requirements of stability restrict to a
great extent the possible locations of the control force., Thus, from
equation (54)

.\
k;2>0  if xo<-@"'i
CLg,
. o (59)
ny >0 if x0<-M
CLgtCLy,
J
With k;% > 0, we have
e1>0 if xﬁ-% (56)

The condition kla > 0 excludes as poseible locations of the control
force all points aft of the aerodynamic center xg; whereas, with

k32 > 0, in order to have c3 > O we must exclude essentially all points
aft of the center of gravity. With kla = ¢ = O, the aerodynamic center
is a possible location in the event that xg < - [(Cmq+0md) / (CLq"'CI&)]-
This cannot be considered a satisfactory position, however, since only a

slight shift of xgp iIn either direction from xg will cause c¢3 to be
negative in one case or k;® in the other. Hence, we conclude that in
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order to satisfy the requirements for stability, the control force must
be located forward of the center of gravity and sufficiently so to insure
that xo < - (Cmg/n').

Gust correlation function.~ One further piece of information needs
to be supplied before the analysis for the optimm control system can be
carried out; that is, the specification of the gust correlation function
W(@). We shall use for this quantity an expression that has been adopted
by a mumber of authors in recent applications to gust analyses (refs. 10
and 33 through 36), namely

-e
W(9) = og? (l - = Icpl> el (57)

Here, agz is the average intensity of the gust vertical velocities, wgz,

made dimensionless with respect to the alrplane forward speed V. The
quantity I is a measure of the so-called "scale of turbulence™ (ref. 34).
Cémparisons of equation (57) wlth the results of existing experimental
studies have indicated that the value of L may vary from the order of
several hundred feet to over a thousand feet. The reader is referred to
references 10, 34, and 36 for a more detailed explanation of the origin

of equation (57) and the ranges of values to be expected of the quantities

2
Wg &D.d L.

Numerical results.- Equations (51), (52), and (57) complete the
specification of quantities necessary for computation of the optimum con-
trol system from equation (48) and the minimized mean-square error from
equation (49). Detailed results of the analysis are presented for the
general case in Appendix B, In this section curves will be presented
which illustrate the nature of the results as they apply to a single set
of operating conditions. The numerical values which define the airplane's
inertial and geometric properties, its tramsfer functions, and the gust
correlation function are listed at the end of Appendix B. The set of
constants defining the alrplene are believed to be representative of those
corresponding to a fighter-type triangular-wing airplamne flying at a high
subsonic speed. The constant L wused in the gust correlation quEE;on
corresponds to a scale of turbulence of 300 feet. The constant aga,

defining the average intensity of turbulence, was left unspecified since
it appears in the results for mean-square error only as a multiplying
factor., Hence, the results can'be made appliceble to a range of weather
conditions by eppropriate selections of this parsmeter.

Mean-square error: Figure 7 is a comparison of the magnitudes of
the minimized and unmodified mean-square errors (egs. (49) and (50)) for
a range of values of welghting factor a and several values of force
position. Large values of &a correspond to welghting the minimization
procedure in favor of reducing the mean-square pitching velocity, possibly
at the risk of increasing the mean-square normal acceleration beyond its
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unmodified value. For small values of a the reverse is true. It is
clear from inspection of the figure that the reductions 'In total error
mey be significant; the results are to be interpreted, however, as indi-
cating only that a significant reduction in one or the other of the indi-
vidual components of the mean-square error is possible. It remains to
be seen whether such can be realized without the penalty of increasing
one component beyond its ummodified value. This point 1s clarified in
figure 8, which shows the individual components of the mean-squaere error
glven as ratios of their corresponding unalleviated values. (The note

at the top of figure 8 permits one to attach absolute values to the indi-
vidual components of the mean-square error, should this be desired.) It
is clear that either error can be made arbitrarily small, but eventually
at the expense of increasing the other beyond its unmodified value., OF
greater importance 1s that a range of a does exist for which significant
reductions in both errors are possible at the same time. Thus, for exam-
ple, for the control force located at the wing nose (xo = -0.25), both
errors may be reduced to about half thelr unalleviated values when a

is near 0.1,

In addition, note that the control force becomes even more effective
in reducing both errors as i1ts point of application is moved forward of
the nose. This would suggest that a canard control surface might be an
efficient means of generating the required force, It should be pointed
out, however, that the analysis in its present form does not take account
of the effects on the 11ft of the main wing of downwash from the canard,
s0 that the analysis is applicable to the canard only if these effects
can be considered negligible. As previously mentioned, the entire ques-~
tion of how to generate the required control force is considered to be
beyond the scope of this paper, and the present results are of value
mainly as an indication theat more extensive analyses, in which this
question must of course be considered, may be Justified.

Control force: We examine next the properties of the control force
that achlieves reductions of both errors, using as an exsmple the case
Xo = -0.25, that is, where the force is located at the wing nose.

Figure 9 shows the transient response of the control force to a step
gust. This force caused the mean-square values of normal acceleration
and pitching velocity to be reduced to about half their unalleviated
values. Also shown as dashed curves in figure 9 are the inputs in aero-
dynamic force and moment due to a step gust. Note that the control force
need be only about a third the magnitude of the gust force and need be
gpplied much less rapidly. This should be contrasted with the problem
of devising a system to provide perfect slleviation, for which the control
force and mcoment must be made to match those of the gust at every instant.

Further insight Into the nature of the control force may be gained
from inspection of the amplitudes of the control-force response to har-
monic gusts. These are shown in figure 10. Also shown in figure 10 1s
a plot of the gust spectral density, normalized so that its value is
unity at A = O. (The spectral density is defined as the Fouriler
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transform of the gust correlation function, eq. (57); it is a measure

of the “energy" contained in each increment of frequency in the gust
spectrum (cf. ref., 8).) Note that, as might be anticipated, the ampli~
tude of control force falls off with increasing frequency as the gust
spectral density does. Again, this should be contrasted to the dashed
curve which 1is the amplitude of control force required for perfect alle-
viation. In the latter case the force 1s Independent of the gust charac-
teristics and clearly is of significant magnitude over a wider frequency
range.

Alrplene responses: Figures 11 and 12 show the amplitudes of the
responses in normal sgcceleration and pitching velocity to harmonic gusts
with and without operation of the control., As in figures 9 and 10, the
control force 1s located at the wing apex. On comparison of the results
for & = 0,1 with the ummodified responses, it is seen in both figures 11
and 12 that the amplitudes of the optimized responses have been signifi-
cantly reduced in the vicinity of the peaks of the curves and that the
pesks themselves have been shifted to the right where the gust spectral
density (fig. 10) has begun to fall off. The effect of both modifications
is of course to reduce the mean-square errors. Also shown in figure 11
is the response in normsl acceleration required to give zero pitching
velocity response (a —> o) and in figure 12, the response in pitching
velocity which gives zero normal acceleration (a ~> 0). The reasons for
the increase in mean~square error of one response, which is a consequence
of attempting to minimize only the other response, are readily apparent
from a comparison of the two curves with thelr respective unmodified
responses.

As a final point, it will be noted in figures 11 and 12 that the
initlal values of the optimum harmonic responses are not zero. This
means that the steady-state values of the corresponding transient responses
to a step gust are not zero. Hence, in response to a step gust, the con-
trol force will cause the alrplane eventually to climb or dive. Unfortu-
nately, the worsening of the transient response usually must be accepted
as & consequence of attempting to minimize the response to continuous
random disturbances; one must count on the probability that isolated step
gusts will not be encountered.,

Off-design performance: The results presented in figures T through 12
apply only to & single atmospheric condition, namely, that corresponding to
8 scale of turbulence of 300 feet., It is of Interest to ask how the system
designed to operate optimally at one atmospheric condition will perform at
others. To investigate this, some computations have been carried out for
the control force which is optimum for a scale of turbulence of 1000 feet.
The results are shown in figure 13 in camparison with the optimm control
force for L = 300 feet (from fig. 9). It is apparent that, since the
results are quite similar, the design is not strongly dependent on the
magnitude of I. Hence, one may expect that a system designed to be opti-
mum for one atmospheric condition willl perform well for off-design
conditions not too distant from the design condition.
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The atmospheric conditions are also dependent on the quantity a.gz.
However, this quantity occurs in the expressions for both the minimized

and unmodified errors as a scale factor. Hence, changing ag® will have
the same effect on both of these errors and the errors of the optimized
system will be reduced by the same percentage for all values of mg-é.

Concluding Remarks

The preceding application of the Wiener optimm filter theory to the
problem of reducing the airplenels response to random atmospheric turbu-
lence has demonstrated that such an approach may leed to useful results.
It was found that significant reductions of both the noxrmal acceleration
and pitching veloelty responses may be achleved, and that construction
of a control system which realizes these improvements may be considerably
simpler than constructlion of one designed to provide perfect alleviation.
Nevertheless, the method and results presented here are by no means meant
to be final or definitive. For one thing, the problem for talled aircraft
has not been touched; the revisions and amendments of the analysis which
are necessary to account for the tail and the effects of downwash may
invalidate some of the results obtalned here. Further, even for tailless
aircraft, in some cases the assumption that the control pitching moment
is proportional to the control force may not be warranted. This would
probably be the case, for example, in the event that the force is to be
provided by a canard control surface whose interference effects are not
negligible. Moreover, other formulations of the problem are possible.
For example, rather than leave the control force umspecified as was done
here, 1t may turn out to be practically more feasible to begin with a
control system of known type having, say, open parameters and use the
Wiener theory to glve optimm values to these parameters. The maln fume-
tion of the present work may be to offer evidence that efforts in these
directions will likewise yield results that indicate the possibility of
achieving significant reductions of the airplsne's response to random
‘turbulence.

Ames Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Jume 28, 1957
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- APPENDIX A
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TRANSFORMATIONS TO HARMONIC. RESPONSES OF THE SUPERSONIC

INDICIAL FUNCTIONS OF TWO-DIMENSIONAL, RECTANGULAR,

AND WIDE TRTANGULAR WINGS

The following is a compilation of the transformations to harmonic
responses of the supersonic indiciel 1i1ft and pitching-moment responses
to step changes in (1) gust velocity, (2) angle of attack, and (3) pitch-

ing velocity.

The transforms sre presented for the two-dimensional wing,

the rectangular wing, and the wide triamgular wing. Sources from which
the indicial functions were obtained are listed as references 25 to 30.

NOTATION AND TRANSFER OF AXES

A1l coefficlents to be presented are glven as transforms of deficiency
functions; these are defined as follows:

g1(1A) =

gs(i?\) =

£.(iA) =

fa (i) =

£5(i0) =

£4(iN) =

o)
«©

L
4

Sy S~y

[o e}

g &

[
[
[
[

Crg(+) -1, () | o
-
Cmg () -Cmg () | €
;
1 (@) ~Cr (o) | e
Gt (=) -G (@) |

- i}
_CLq(w) ~CLq (@) e

() <Cng() |

-iNop
-1K@d¢
-1\ ao
--i?xqadcp

-1x¢d¢

-ik¢a¢

\

—— e ———— e -
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The transforms due to pitching velocity f£ao(iA), £4(iA) will be presented
for a wing pitching about the leading edge or the apex. Likewlse, all
pitching-moment transforms are referred to an axis through the leading
edge or the apex. To calculate the transforms for an axis location other
than the nose, the following transfer relations may be used:

-
g1(iN) = 81o(iN)
ga(17) = gao(in)+Eg1(iN)
£2(10) = £ag(1n)
(A2)
f5 (i) = £5o(IA)+EL1 (1)
£2(1N) = £og(iN)-££1(1N)
£4(IN) = Lo (1N)+EL20(1N) ~Efao (1N) ~E2L1 (1N) )

Here, ¢ 1s the number of chord lengths of the new axis from the nose,
measured positive rearward from the nose; the subseripted terms are those
listed below, referred to the axis E = O.

TWO-DIMENSIONAL WING

Transforms
£2(18) = 2= [£o(,7) -1] (83)
gao(1N) = % [1-27:(M,5) ] (ak)
£2(0) = 2 AALE200,) 204, ]+i[fo(m,a>-1]} (85)
foo(th) = 2 { ALEo (M, -22(,3) 141122 (4,9 1 (26)

£2o(1N) = Ta%?\ {Mafl(M,m ~F2(M,B) ~£5(M,B) I-1[1+2f; (M, ) -2, (M, ©) ]}
(A7)
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2a(1h) = g {0, + (G - -1 [0 01,020, 4 T1-22 01,3+

381 (M,5) 22 (,T) 1} ~ (28)

In the above, the £,(M,%) are Schwarz functions (ref. 37), defined as
h
£ (M,5) = D -1ty <m“> du

f (49)

el
I

EE

J

Numericel tebulatlions of these fumctions for M = 1.20 may be found in
reference 38.

Initial Values

As an aid in plotting the transforms as A => 0, we give below their
flrst-order expansions.

Mo g (1) =2 25 () (410)
U gag(1N) = - %‘-g " Ifg (2241) (a11)

Lim £1(4A) = Ei— - % (A12)
}\l-i;nofso(i?\) - - 3—;‘3 + -f:ig (a13)

i -2 15 .
Lim  fa5(1)) = 3 (ALk)
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iw

1
1im £ i = = c— — Al
Mn 4o(1N) prlien (A15)

Stability Derivatives

Finally, in order to complete the compilation of terms needed to
calculate the harmonic responses, equations (13) and (1) in the text,
the necessary stability derivatlives are listed below.

Crg(™) = Or () =5 (416)
g (=) = Cmg (=) = = 2 (A17)
Crg, = - 73?5 (a18)

2
Cqu(‘”) =3 (420)
Ong (=) = - 5”5 (a21)

RECTANGULAR WING

The harmonic funetions and stability derivatives for the rectangular
wing are each composed of a two-dimensional contribution plus a contribu-
tion dependent on aspect ratio. Listed below are the aspect-ratlio contri-
butions, each of which should be added to the corresponding two-dimensional
function, already glven. The results are valid only for those combinations
of Mach number and aspect ratio for which A 2 1.

Transforms

2 - -
Agl(:n\) = Eai—g < %.I + % + me 1}\/m_ne i7\/n> (_A22)
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2
Agay(1N) =~ L [—8- NEFE + 21<me'i7‘/m-ne'i7‘/n> +
MAX B2

SLMA 3
2 (mze-ix/m_nae-m/n>] (123)
Afgo(iN) = Mai}\z il + 25::\;1) - i 21;:;\ - % (mae-i)\/mmze-i)\/n) -
% (me-n/mme-n/n)] (e

MeoiN) = s [”l ¥ %(PM;;H ¥ 382 > 2 <m2e M nte” Wn)]
(A26)

2p\2 1482 . Ma?\z
i - -
% (spemtMmpe-ine)) (s27)
where
n = M
M
m = .L_I—_l.
M

}\1£>mOAg1(i7\) = -z B‘*'A (3M%+1) (A28)
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M2 18 e
Lm | Agso(1h) = 5T 3 (342+1) (429)
_ iw >
lim Af3(1iA) = ey (ML) + oy (M2+3) (430)
: __l gy - 218 e
lim Afao(IN) = gop (D) - o5 o (%3) (431)
lim Ao (iA) = - —— (MB41) + = 22 (M%43) (A32)
A—>0 68*A 30 p*A
_2 (M) 1 4T 2
Un AN = 55 = 2 ga (M+3) (A33)
Stability Derivatives -
2
A0y, (@) = ACLg(w) =~ 5= (A34)
N
Apmao(w) = Acmgo(w) = ‘?ﬁa—A (835)
ACLg, = 3;4A (M2+1) (A36)
Aomg = - 2_8%11 (M2+1) (A37)
2
[0} = - .A.
ACLg () % (438)
Mg (=) = 5= - (239)

WIDE TRIANGULAR WING

Presented below are the transforms, their initial values, and perti-
nent stebility derivatives for the wilde triangular wing. Results are
applicable so long as the wing leading edge is supersonic; hence it is a
requirement that BA 2> L,
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Transforms

ga(1h) = 42 [fo(M,m) =", (%, -b{“;-] —i} (8k0)

ool =551 3 [0 (3 ) a0 ] +

1 [1 + 3 (20,3 e, (ﬁ, .ﬁ‘.>] } (A1)

(D) = 5 {r (262007 2200 2506 | +

t 2000w 20491 | ()
fo0(t) = L {reatum) +(n %)[ £0(4,T) -eflm,m] +

1 [1-afo<m,m)+3fl<m,m> -f2<M,m>] } (ak3)
) = {09+ (4 D) e, 09

| -eratmiena(m | | ()
a0l = & Peae3)(2 + 223) 2 (34 D) raum 4

14+ 201 e (M,3) 1] 1r2P,(M Yoo (M,
+_M_2_?\E o\M,w) + +2;m)+a——>\1(:w)-

2 (l + -;\1-5 fo(M,U)] } (ak5)
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The £, (%, %) function which appears in gi(iA) and gs(id)(egs. (ALO)

and (A1) is dePined as,

N
o (%, -l-d%> =f e M2 JO<%L1-> du (AL6)
o

Tabulations of this function are not as yet available; in their absence
the function can be evalumted either by numerical integration or by means

of the series expansion, (cf. ref. 37)

SRS (5 [n(E) e ()]

fo <1%1’ 5435_) - L 2"ni(2ns1)
(AkT)

Initial Values

Mz ea(1)) = Eg-g (22-1) - 6;2 5 (E-42) (al8)

Lin gso(13) = - & (@F1) + 5 ﬁi-‘_%:g (6M*-52+2) (ak9)
_}:\Li_l;o £1(IN) = -3-;—3- - 2—1—% (A50)
n  foo(i) = - Elg + % %g (a51)
Jim 2010 = Eﬁg - -53‘5% (852)
i Lap(1N) = - I%g s i (853)
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Stability Derlvatives
C]:ul(oo) = CL (co) = —lt
8 B

) = (> =——8-—
() = O () = -

N
C = = am——
e 7 s
1
cmao='é§
_8
Orq, (=) =35

k7

(a54)

(a55)

(A56)

(A57)

(458)

(A59)




18 NACA TN 3290
APPENDIX B
SOLUTION OF INTEGRAL EQUATION FOR P(¢)

The following is a compilation of expressions which arise in solving
the integral equation for P(g@), equation (47) of the text. The equation
is readily solved by the use of the two-sided Laplace tramnsform (ref. 39).
For any function F(9), define the transform as

[o2]

- £(s) = f F(p)e™ " Fap (B1)

~00

and we denote the transforms that result from integration of F(g) for
positive and negative values of ¢ by f,(s) and £_(s), respectively.
Thus ’

S
£,(s) =£ e (g)agp
o ) (B2)
2(s) = [ (o)
- J
The solution maey be put in the form
6
0y (s) = RHPT (23)

vhere p, (s) is the transform of the desired quantity P(¢). The latter
quantity is different from zero only in the range ¢ > O; it is zero for
9 < 0, as it must be to be physically realizable as an impulse response.

The following quantities arise in the derivation of a(¢) and 6,(s):
U+(B): S(p): From equations (27), (51), and (53)

(s+a1) (s+a1%*) (s+p)3

a,(s) =
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vhere

ey = u1 + 1\

-3 () )]
- o)

e (i) o]

i ad
e = B (Gaeatia)
The inversion of o,(s) glves

8(q) = (sgrea0reap?)e ™® + age ™% 4 sgxe 179 (35)

where

B P - ) S
2773 I:( s+a1) (s+a1*)]

8 ==D

a [ Aes8Z+A18 ]
8=

8y = =
a8 | (s+ay) (saa™) 1y | o
1 42 l: AoB82+\18 ]
B8 = -~ =
2 ds® [ (s+ay) (s+a1¥) 8=-p
7\2824-)\18 ]
fa = s *
[ (o+p)® (5@ Jy - _a,
B 7\282'+7\18 ]
sg¥ = 3
_(S+P) (S'I'al) S=—a-1*
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p.(8): From equations (27) and (51),

1 s+c1
°+(8) = ¥ (oran) (svar® (26)

where

g
' %+Cpy
*oCrCu,
N Xg+Cp

Cy =

w(8): Using equation (57)

o

w(s) =f W(p) e %4

:

= 3Nag? '(‘37?25}2%5 (B7)
where
e
NZ
=3
u(s), U(p): Using equation (L42)
w(z) = [ v(e)e % = o, (s)w(a) (28)

-C0

To £find U(g) for ¢ > 0, we evaluate the residues of the product of
0,(s) and w(s) at poles in the left-half plane. The result is

U(9) (¢ > 0) = (UgtUrp+Uz¢7) e PP + Uae-a"q) +

U,?,'*c=t;“-"'5":'--)?5p + (UgtUs0) eV (B9)

oA
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where
Uo = 82w' ' (~p) + 81w (-D) + 8ow(-D)
Uy = 285w' (-p) + s1w(~D)
Uz = sgw(-D)
Us = sgw(~a1)
Us* = sa¥w(-a,¥)

0 =52 o) - Loy |

¥(8): The two-sided Laplace transform of the autocorrelation function
¥(¢) may be written (using eq. (45))

- ~8030 1
o) = [ ¥ % w(s>[1+ap+(s)p+(_s)]
= ;Zgégégéy (5%-2y282+752) (B10)

where

a
272 = 8.12 + 8.1*2 4 —

R

ac 12

K=

(2121%)% +

702
This may be factored to the desired form

¥(s) = 0,(s)e_(s) (B11)
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where

(7+8) (b+s) (b*+s)

%4(6) == (W+8)Z(cat+s)

_ (7-8) (b=s) (v*-e)

6_(8) =&
(<) (W-8)2(ca-8)

X
([ K22 S
- a

b=p+ 1o

[ ol
B = ~/— 2

[76]-72
2

Il

a(p): Letting
- u(s)

A(S) = 6_(5)

NACA TN 3290

(B12)

we £ind a(g) for @ > O by evaluating the residues of A(s) at poles in

the left-half plsmne. Let

1

A(8) = (o)

a(9) (¢ > 0) = (AgtArprAngP)e T7 + Age

2% L (A e

(B13)

=83Q

+

(B14)
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Where
Ay = UoA_(-p) + UsA_*(=p) + UaA_*'(~D)
A1 = UaA (-D) + 2Uzn_'(-p)
Ao = UpA (-Dp)
A = Usp_(-21)
L™ = Us*A_(-aq1¥)
Ay = U _(-N) + UsA_'(-N)
As = UgA (-N)

P(9): Having determined 6,(s) (eq. (Bll)) and a(g) (eq. (B1L)), we
find P(9) by inversion of equation (B3). The results may be written .

P<CP) = (Po'l'PJ_CP'I-PZCPZ) e-PCP + Pse-'a'lcp + Ps-)(-e-&l*cp +

- - —b¥
Pge 7?4 P_,ebcP+P7,*ebcP

where
Po = <UoA(-p) ~ Uza!(-p) - Upa''(-p)
P1 = -U3A(-p) - 2Ua4'(-D)
Pz = -UaA(-D)
Pg = -UgA(-a1)
Pg* = -Ug*A(-a7%)

(N-7)2(e1-7)
(o-7) (b*~9)

A+ ("7)

J
0.}
[
1
Il =

(N-b)#(c1-~D)

A, (-b)
(7-b) (b*-b)  ©

g
~
|
I
Iy

(N-%)%(c1-b%)

¥
(7-b%) (b~b¥) A (27

H
Yy
1}
]
nil-
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1
ale) = ¥(s)
A+(S) - A0 Al 2A2 + AB +

" ots | (pre)2 (p+8)®  (ag+s)

o™ b B, A5

ai;¥rs  Ms  (W+s)@

TABULATION OF CONSTANTS

Given below is a tabulation of constants which were used in numeri-
cal computations to describe the airplane's inertial and geometric
properties, the system functions, and the gust correlation function.

Afirplane:
Mass parameter 1t = 100
Inertia parameter £ = 100
Wing chord c =30 ft

Center of gravity located at 0.25c

Airplane system functions:

Cr, = 3.0 Cpg, = 0.50
Cmy, = =075 p o= 0.0175
CLq = 2.0 k = 0.0861
Cy = -1.0 p = 0.20
Cre, = -1.0 T = 0.021

Gust .correlation function:

L = 300 £t
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Figure 1l.- Normal acceleration response to harmonic gusts of an aspect-
ratio-3 rectangular wing flying at Mach number 1.2.
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Figure 2.- Pitching veloclty response to haxrmonic gusts of an aspect-
ratio-3 rectengular wing flying st Mach number 1.2.
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Figure 3.- Normal acceleration response to sharp-efige gust of an aspect-
ratio-3 rectangular wing flying at Mach number 1.2.
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Figure 4.- Pitching velocity response to sharp-edge gust of an aspect-
ratio-3 rectanguler wing flying at Mach number 1.2,
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Figure 5.- Normal acceleratlion response to harmonic gusts of an aspect-

ratio-3 rectangular wing that is restrained from pitching; Mach
number 1.2,
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Figure 10.-~ Amplitude of control-force response to harmonic gusts.
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Figure 11.- Amplitude of normal acceleration response to harmonic gusts
wlith and without operation of control force.
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Figure 12.- Amplitude of pitching velocity response to harmonic gusts
with and without operation of control force,
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